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All known theories of plasticity which include the concept of the angle 
on the yield surface contain in one form or another a specific assumption, 
i.e. the principle of independence of plastic response of certain elements. 
In the physical theories, such as those by Batdorf and Budiansky cl 1, 
Lin f 2 I, etc., the principle of independence of plastic response is 
accepted for each plane or for sliding systems. In the phenomenological 
theories of the type of Koiter 13 I and Sanders r 4 I, the principle of 
independence of response is stipulated for each regular surface or plane 
of yielding. A survey of such theories can be found in reference [ 5 I. 
However, the application of the principle of independent response in 
plasticity calls for certain known criticism. It can be only hoped that 
the errors induced into such theories are little dependent on the state 
of stress, and that this theory, verified in a simple experiment. gives 
sufficiently accurate results for arbitrary states of stress. 

Therefore, it is natural to establish a theory of plasticity which in- 
cludes the concept of the angular point, without application of the prin- 

ciple of independent response in any form. Such an attempt has been made 
by the author [ 6 1 for problems of plane loading paths. However, one of 
the assumptions introduced in that paper, namely the plasticity conditions 
for radial loading. is not quite satisfactory. In place of that assump- 
tion, in the present paper we consider a more general one, which seems to 
be the more natural assumption D. In addition. the local-minimum property 
of change of the plasticity curve as described in [ 6 1, which leads to 
angles on that curve, will be formulated somewhat differently (assumption 
C). The new system of assumptions leads to improved results. Thus, one of 
the conclusions difficult to explain on the basis of the theory advanced 
in [ 6 f consisted in the fact that at the end of simple loading there 
existed another region besides the elastic one; if an additional loading 
was directed into this other region, the plastic shear modulus became 
equal to the elastic one. In the present paper the plastic shear modulus 
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is dependent on the direction of loading, as in the theory by Batdorf and 

Budiansky, which appears to be more natural. 

BY virtue of the method of presentation used in [ 6 1, it may possibly 

be somewhat difficult to obtain an appreciation of all the assumptions 

which are truly necessary for the derivation of the relation “stress- 

strain”. In the present paper we have made an attempt to delineate pre- 

cisely these assumptions and to formulate them in such a manner that the 

following investigation bears a geometric character. 

1. Definitions and restrictions. Denote by P the stress vector 

and by 3 the strain vector, whose components form a deviator, and let 

these vectors be constructed in a nine-dimensional system of coordinates 

such that the deviator canponents with a single subscript are measured 

along the same axis. Further in place of the vector 3 we will often in- 

vestigate the vector of plastic deformations 3P = 3 -P/ 2G, where GG 

is the elastic shear modulus. Evidently, components of this vector can 

be written as 3ijP = 3ij - Sij / 2G. We will call the hodographs of the 

vectors P, 3 and 3~ the paths of stress, strain and plastic strain 

respectively. We call the small change of the state of stress, character- 

i zed by the vector AP , the additional loading. ‘lhe magnitude of th& 

vector P, AP and 3V is denoted by p, ho ad ‘3’ respectively. 

We confine ourselves to considering the case when the loading path lies 

in a two-dimensional plane of the nine-dimensional space indicated above. 

The stress-strain relation is then applicable, for example, for stability 

investigations. ‘lhe assumed properties of the material will be formulated 

with respect to the plane stress vector. 

3 Assumptions. A. If a relation can be established for two diffe- U. 

rent paths of loading, such that the distance between two corresponding 

points is less than 6, then the strain between corresponding points is 

less than c , which depends on 6 and which approaches zero as c approaches 

zero. 

B. For any state P, obtained by a given loading, there exists a closed 

piecewise maooth convex curve in the plane of stress, called the plasti- 

city curve, such that moving along the curve, or inside the curve, re- 

presents purely elastic deformation of the material. 

C. &ring the plastic deformation the plasticity curve changes con- 

tinuously, possessing the following local property: during additional 

loading AP, the points on the plasticity curve in the neighborhood of 
loading may be displaced only in the direction opposite to the origin of 

coordinates, tending to pass along the shortest path. 

D. Let there be given tm, states of stress P, and rz, and the addi- 

tional loading AP, and AP, corresponding to the plastic deformation 
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A3ip and A3$ respectively. If the differential element of the curve of 

plasticity at the point P, can be superposed by a rigid displacement or 

reflection, with the differential element on the curve of plasticity at 

point P2, and if the vector AP1 can be superposed with vector AP2, then 

the vectors A3ir and A32P be superposed too. 

E. lhe volumetric strain is elastic. 

3. Discussion of the system of assumptions. Assumption A is 

the usual condition of continuity and geometrically expresses the fact 

that a small change in the loading process causes a small change in the 

deformation process. Assumption B represents a geometric interpretation 

of the generally accepted concept of the loading function I’7 1. 

There is reason to be1iev.e that the sequence of the plasticity curves 

on an arbitrary loading path is such that in the neighborhood of the 
points on the path the preceding plasticity curve does not pass outside 

the following one. ‘Ihis proposition is obvious in the case of a mth 

plasticity curve. Its violation in the presence of angles on the plasti- 

city curve may lead to a non-elastic response of reversed loading, rhich 

seems to us impossible [ 6 1. It is regrettable that no special experiments 

have been conducted to clarify this point. ‘Ihe majority of experimental 

studies, the investigation of the laws governing the changes in the 
plasticity curve, have hitherto been conducted for the case of simple 

loading, for which the detail of the behavior of the plasticity curve in- 

dicated above is fulfilled. ‘lhe most significant study in this direction 

is admittedly that by Naghdi, Essenburg and Koff, in which (as also in 

some other papers) it is pointed out that in the process of simple load- 

ing the plasticity curve changes continuously, and in some regions, near 

the end of the stress vector, tends to be linear, becoming more acute as 

the stresses increase. Assumption C is an idealization of the propositions 
expounded above. We note that this assumption is a special consequence of 

the method postulated by Sanders regarding the construction of plasticity 
curves. 

It is known that in the process of plastic deformation the shape of 

the plasticity curve depends on the loading history. We may assume that 

this is a reversible one-to-one relation, that is a given plasticity curve 

corresponds to a unique loading path and vice versa. It follows from this 

that the vector A3’ will be completely determined if the plasticity curve 

and the additional loading vector AP are given. Indeed, this is true if 

the plasticity curve is smooth, and it further turns out that the direction 

of 63” is influenced not by the whole plasticity curve, but only by its 

differential element at the point of additional loading; thereby the in- 

fluence of the differential element and the vector AP on the direction 
of the vector 83’ is invariant with respect to the group of rigid dis- 
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placements in the stress plane, that is it is the same in the local system 

of coordinates connected with the differential element and the vector AP. 

As regards the magnitude of the vector A,3p, it depends on the whole 

plasticity curve. Since the laws of change of the plasticity curve for an 

arbitrary loading path are not known, the tendency has been to select a 

simple scalar function, whose influence on jA3'( can to a certain extent 

replace the influence of the plasticity curve (for example, stress in- 
tensity, plastic work, etc.). 

If a singularity occurs (plasticity angle) at the point of additional 

loading, then together with a considerable increase of the complexity of 

the study, a positive characteristic appears which consists in the fact 

that a scalar function is introduced which is related to the point of 

additional loading in a natural way, namely the magnitude of the plasti- 

city angle, which may possibly be used as a measure of plastic deforma- 

tion. On the other hand, the possibility that the occurrence of an iso- 

lated singularity pn the plasticity curve violates the feature that the 

plasticity curve influences the direction of A3P only locally, established 

in the case of smoothness, seems remote. At any rate, it appears that the 

influence of the parts of the plasticity curve remote from the point of 

additional loading on the direction of A3n may be neglected as corq>are(l 

to the influence of other factors. On the basis of what has been said 

above, in the case of occurrence of angles on the plasticity curve there 

arises the possibility (whose presence in the case of smoothness is not 

clarified) of determining the vector A3Pcompletely by means of the diffe- 

rential element at the point of additional loading and the vector ‘AP, 
that is of making this dependence a more local one. Thus, it may be 

assumed that the vector A3')will be completely tletermined if the magni- 

tude and position of the plasticity angle and the additional loading AP 

are known. Assumption D asserts that the position of the plasticity angle 

does not influence the relation between the vector A3rand the additional 

loading and represents a simple extension of the property of local in- 

variance, which occurs in the case of smoothness for the direction of the 

vector A3', an1 for the direction and the magnitude of A3pwhen the 

plasticity curve has angles. 

We note that assumption D contains more than we need for what follows. 

We will merely require assumption D to be satisfied when the vector A3" 

is along the bisectrix of the plasticity angle. 

Finally, assumption E is the usual one in plasticity theory. 

4. .Some consequences. To determine the relationship between the 

vectors of stress and strain, the given loading path can be replaced by 

some other neighboring path, which may be conpOsed of separate curves or 

of straight lines on which the plasticity laws are known or are postulated 
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in a more natural manner than on the original path. In accordance with 

assumption A the deformation path found will pass over into that sought 

if the changed loading path approaches the given one. 

From assumption B it follows that the plasticity curve changes during 

the process of plastic deformation in such a manner that it always passes 

through the tip of the stress vector. At this point the differential 

element of the plasticity curve, in general, is represented by an angle 
which we will call the plasticity angle. lhe magnitude of this angle will 
be measured by the angle y which is formed by one of its sides with the 
extension of the other. A point of smoothness corresponds to the case 
y = 0. 

Let there be an angle y at some point P of the plasticity curve. Around 
the point P we isolate a sufficiently small region H whose diameter is of 
the order of magnitude of future additional loading. Further, let an 
additional loading AP act within the curve at some point of the region*H, 
which leads to a point P*. Then the new plasticity angle at the point P 
differs from that constructed by the method of tangents from the point P* 

to the original plasticity curve (for the point PI in distance by a magni- 
tude of the highest order of smallness in comparison with 1 Al’\ . In fact, 
in accordance with assumption B, the angle of plasticity at point P* may 
not cross the original plasticity curve in the region H. Further, since 
the plasticity curve is convex and changes continuously, it follows that 
the sides of the plasticity angle at the point P* may not get closer to 
the origin of coordinates than the tangents from the point P’ to the 
original curve, within an accuracy of deviations (in distance) of an 
order of magnitude higher as compared to 1 APi . On the other hand, these 
sides cannot be further away from the origin of coordinates (within the 
same degree of accuracy) than the tangents indicated, because the latter 
(taking into account the non-concavity of the plasticity curve) corres- 

pond to the smallest displacement paths of the points of the plasticity 
curve, as is required by assumption C. 

As is known, the condition 

(4.1) 

is satisfied for simple loading from an initially isotropic state. 

From the condition of symmetry it follows that the plasticity angle in 
this case is always sytnnetric with respect to the ray of loading. let 
p = p(y), then 
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Fig. 1. 

From assunption D it follows that if on sane loading path (not necessa- 

rily a simple one) the vector of additional loading is directed at each 

point along the bisectrix of the running plasticity angle (bisectorial 

loading path) then for this path, as weil- as 

1 ationship 

d3” = P (76) dP 

for the simple one, the re- 

(4.3) 

hollls good, where ycr is the magnitude of the 

point of the given bisectorial loading path. 
plastic angle at the running 

5. flerivation of relations between the vectors of stress 
and plastic deformation. Let some loading path be given (Fig. 1). We 
replace it by a neighboring broken path constructed by the following rule. 
From some point al of the given path we go along the sides of the plasti- 

city angle at this point, directed to the same side of the bisectrix angle 

which is also tangent to the given path at the point al. Next, from the 

point b,, close to a 1 and situated on the given side of the plasticity 

angle we go along the path b1a2 which possesses the property that its 

tangent at each point coincides with the bisectrix of the running angle 

of plasticity (bisectorial path). Further, it will be seen below that such 

a path will lead from b, to some point a2 on the given path of loading. 

Next, from the point a2 we go along the side of the plasticity angle at 

this point to the point b,, and again by the bisectorial path from this 

point, etc. 

We isolate a path element anan + 1 and the corresponding broken path 

anbnan+ 1 (Fig. 2) and calculate the increase of plastic deformation along 

the broken path. Along the part anbn, in accordance with assumption R, the 

increase of plastic deformation is equal to zero. On the basis of the 

results of the preceding section, relationship (4.3) is valid at each 

point of the path on the portion bnan+ 1, and the plasticity angle yo is 
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Fig. 2.’ 

constructed as follows: the upper side of the plasticity angle at the 

ruling point of this path is parallel {with an accuracy indicated above) 

to the direction ,j, and the lower passes through the point an, if 0 < 

X < y, and parallel to the direction kan, if X >/ y (Fig. 2). Here y is 

the initial plasticity angle at the point a,, and A is the angle formed 

by the running radius vector r of the bisectorial portion with the direc- 

tion j. It is seen that y, = X on the portion (3 < X \< y, while the bi- 

sectrix of the plasticity angle forms the angle l/Z X with the perpendic- 

ular to r at each point. Therefore, the equation of bisectorial path on 

the portion from bn to k is the equation 

dr . ..-.= tg -$- C or 
rah 

j-z- 
CO.9 ‘jgt 

(5.1) 

Let rZP designate the additional loading along the given path from the 

point an to the point an+ 1 and let fl be the angle formed by the direction 
of ADwith the direction j. 

It is then not difficult to show that 

\ Aa cosf! ‘js 9 

c = 1 Aa cos (9 - ‘/zy) cos “12y 
if o<p<r 
if p > y (5.2) 

On the portion ka,+ 1 the bisectorial path is a straight line parallel 
to the bisectrix of the initial plasticity angle and yo = y. It is now 

obvious that the bisectorial path leads to the point on the given loading 

path. 

The general increment of plastic deformation on the path anbnan+ 1 is 
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Let us designate below by indeces 2 and 3 the zones 0 < /I! < y and 

P >, YI and the elastic zone fi< 0 by the index 1 (Fig. 2). (For example, 

A?P is the increment of plastic deformation if the additional loading 

AP is derected toward the zone 2. ) Inasmuch as dF /dh = 0 for X > y 

and inasmuch as the constant C takes on different values in zones 2 and 

3, we obtain two different expressions for the increment of plastic de- 

formation in the two zones. 

LIP.1 
(We should bear in ming that F(n) = 0, P/~ = 

Aa2p = F(p) AP - AG cos” Y 

0 (5.4) 

n = i sill ). -A- j ~0s i. (S.I,) 

For simple loading /i = l/2 n + l/2 y, .I = d and for the equation for 

the thirll zone, we find 

Iience 

(13” = F (7) dP (5.6) 

Z<(y) = fg = (II (p) (5.7) 

lhe integrals on the right-hand sides of equations (5.4) are particu- 

larly simple to evaluate if we set 

1; (7) =z .l (7 -$ sin “i) (5.8) 

It is important to note that the function F selected in such a way 

provides the possibilityof sufficiently well approximating the curves of 

uniaxial experiments. Taking F in the form (5. g), we integrate this rela- 

tionship; taking into account that .IP = i sin /3 + ,j cos p, as a result 

we obtain 

These equations, with an accuracy within small quantities of an order 

higher as compared to 10 , give the increment of plastic deformation 

along the broken path. Proceeding to the limit as .\o is made an arbi- 
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trarily small do, in accordance with assumption A we obtain that along 

the initial loading path .an infinitely small additional loading 6 P pro- 

duces an infinitely small increment of plastic deformation 63” , to be 

evaluated by equation (5.9) in which the symbol I has to be replaced by 6. 

Let us switch in the formulas obtained from reference vectors i, ,j to 

reference vectors 

p=$. (I-& (5.10) 

Ike position ant1 magnitude of the plasticity angle with respect to 

these vectors will be characterized by angles 55 and I/I (Fig. 3). We intro- 

duce the convention that the angle (b characterizes the deviation from the 

direction 6p of that side of the plasticity angle whose projection on 

this direction has a positive sense. The position of the vector 6 P in the 

new system of base vectors will be characterized by the angle a formed with 

the direction 6~. From Fig. 3 it is seen that 

Fig. 3. 

i = p c0.s p + q sin ‘p: j = - p sin 9 + q cos F 

r=F+#, 
SP cI=j!-9, s;ilix; -- 
6fs 

(5.11) 

We now evaluate the modulus of 6~. On the basis of the definition of 

the vector p we have 

‘;p = 6 (pp) = 2py + 6/1p 

llence 6a2 = 16p ( ‘P2 + (8p)2. lherefore, 

(5.12) 
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On the basis of formulas (5.11), (5.12), the expressions (5.9), where 

we put A = 6, are easily transformed to the form 

As is easily seen, the components of the vector p are the components 

of the stress tensor S..* = S.. (p* = CS ..*I. Therefore, the tensorial 

form of relationships 13.13) iiPbbtained b y'lsimply replacing 63" by 63ij7’, 

p by S..*, an 1'1 are unknown scalar 

functi&. 

and sin a by 6pl6a, (So* = ~GSij2); (b d 

6. Certain supplements. Let an additional loading SP act from the 

state P which was reached by a simple loading. In this case we have to 
put in formulas (5.13) d= r/f, y = 2y= y(p). If the vector 6P is in the . 
zone 3 (a >, l/2 y = +), then by formulas (5.13) we have 

Relationship (6.1) is reminiscent of the deformational 

Nadai. For a full conformity it is required that 

(6.1) 

law of Ilencky- 

(6.2) 

'Ihen, taking into account (5.7), in fact we have 

3: = Z(P)P = (3P/P) P 

Let us clarify the meaning of 

respect to p, we obtain 

condition (6.2). Differentiating with 

sin r)] = 7 + sin 7 (6.4) 

llence we find p = c/ cos l/2 y. For p = p, we must have y = 0, there- 

fore 

(6.5) 

Thus, for the relation (6.1) to coincide fully with the theory of 

llencky-Nadai, the plastic angle in the process of simple loarling should 

change in such a way that its sides always touch the initial plasticity 

circle p = p,. (The latter is postulated in the theory of Sanders and 

follows from the theory of Ratdorf-Rnliansky.) ‘Ihere are grounls for 

assuming (experiments on stability of elasto-plastic structures) that the 
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deformational theory should be valid within the limits of certain angles 

of additional loading, Within the framework of the assumptions laid down 

in the present paper this is possible for the zone 3 and therefore the 

change in the plasticity angle represented by equation (6.5) may possibly 

be close to the actual one, 

We emphasize that the importance of the result obtained lies in the 

fact that it discloses the possibility of satisfying the defonnational 

theory (within certain limits) without violating the basic assumptions of 

the mechanics of solid media (for exmnple, the condition of continuity). 

This assumption coincides with the conclusion of the slip theory of 

Batdorf-l?udiansky, even though the latter is based on entirely different 

assumptions from the present paper, We note that condition (6.5) of the 

present paper represents a particular case, and the theory admits, for 

example, of the introduction of an additional constant, which may improve 

the theory. 

Even for condition (6.5) the relationships for the center zone remain 

very complicated, and we will not write them down. 

If at the end of simple loading an additional loading occurs which has 

a component in the direction of 6p, then the relationships obtained pre- 

dict the appearance of plastic deformation in that direction. Let us de- 

termine the magnitude of the ratio of the component of plastic deformation 

in the direction 6p to the component of the additional loading in this 
direction 6~ = 6a cos a. 

From relationships (5.17), taking into account 16~ ( = p-ldo cos a, we 

obtain 

a-y,,11r7’ 
- _ 

n 11/2[(“;--itl-;)-I-2a-21 g a (:!JS’ 1/2r] (- ‘/z 7 -so! \(: ‘/‘ss) 

o’rl I(7 - sirt r) (a > ‘/zr) (G.(J) 

If condition (6.5) is assumed to be valid, then by fonula (6.21 we 
have 

(G-7) 

Hence 

If simple extension has taken place up to the point P, then 
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by virtue of elastic compressibility of material 

7 
p = 1//\‘sij? Z 

J_ 
+ OX 

Ilence 

where E is the shear modulus on the curve of simple extension, E is 

Young’ ssmodulus. Further, let the additional loading be given as a com- 

bination of extension 60~ and shear Fr xy. Thereby /;q = 63~&_S,, = 

(‘ls)(Sy:@.VJ. ‘lhe angle a will be determined by the relationship 

sill a = - = -L SP CSijSSij 

so 
(1 + 32)~‘i’ 

P (~ssijy’ - ~ I 

(G.10) 

and on the basis of what has been said above and (6.8) (the subscripts 

x, y are omitted) we have 

‘lhe instantaneous plastic shear modulus Gi is determine11 by the form- 

ula 

Gi = ; = ” G 

/ 6y” + syy - 1 + Ge,P/67 
(6.12) 

and thus it is completely determined by the relationship (6.11). As is 

seen, for atlditional loading into zone 3, Gi does not depend on the 

direction of the additional loading &T/C% and coincides with that pre- 

dicted by the deformational theory. For additional loading into zone 2, 

Gi changes smoothly with the change in direction of additional loading, 

from the value indicated above to G, = G on the boundary of the elastic 

region. For orthogonal additional loading 60 = 0 we have 

(6.13) 

These results coincide with the consequences of the slip theory of Ratdorf- 
Fludiansky. 

7. .&me qualitative deductions. It follows imnediately from 

assumption D that for an additional loading from an arbitrary state P 
associated with the smooth point of the plastic curve, the same effects 

take place as for the passage beyond the initial plasticity circle, pro- 
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vided the orientation of additional loading with respect to the two diffe- 

rential elements is the same. In particular, it should be expected that 

for an initially extended specimen the shear curve in the vicinity of the 

yield point (possibly a changed one as compared to the initial one) may 

be of the form as the initial one. 

As is seen from Section 6, the function y = y(p) must be known in order 

to determine the increments of plastic deformation for an additional load- 

ing from the end of simple loading. In our calculations we determine this 

function by formula (h.S), and this was the only possibility of making 

the deformational theory valid not only for simple loading. Formula (6.5) 

permits of changing the plasticity angle in such a way that it can easily 

be generalized for the case of an arbitrary loading path in the form of 

the method of external tangents postulated in [ 4 1 : To provide a rigorous 

justification for such a method of construction of plastic angles does 

not appear possible within the framework of hypotheses which have been 

introduced; however, the application of the method of external tangents 

is reasonable for the verification of the theory and for the clarification 

of possibilities for its improvement. 

‘Ihe most essential conclusion of the theory employing the method of 

external tangents is the fact that for paths which deviate rather strongly 

from simple loading, a conformance with relationships of the theory of 

Jlencky-Nadai is obtained. (The tangent vector to the path of such loading 

at an arbitrary point must lie within the angle foxmed by the tangents to 

the initial plasticity circle from the given point.) If, however, the 

tangent vector to the loading path at each point lies outside the indi- 

cated angle on one of its sides, then along the whole of such a path the 

relationships of the second zone are fulfilled, whereby the angle $, 

entering the relationship, will be equal to the angle which would be ob- 

tained at this point for simple loading. A circular loading p = const, 

produced at the end of simple loading, falls into this class. 
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